Parallelize
auto_similarity
auto_similarity(
circuit: Circuit, weight_1q: float, weight_2q: float
) -> tuple[cirq.Circuit, dict[Hashable, float]]
Automatically tag the circuit with topological basis group labels, where each group is a pair of gates that can be executed in parallel.
Inputs: circuit - a cirq.Circuit to be analyzed. This should be CZ + PhaseXZGate, otherwise no annotation will occur. weight_1q: float - the weight to assign to single-qubit gates. weight_2q: float - the weight to assign to two-qubit gates.
Returns: [0] - the cirq.Circuit with each gate annotated with topological similarity tags. [1] - a dictionary mapping each tag to its weight, where the key is the tag and the value is the weight.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
block_similarity
block_similarity(
circuit: Circuit, weight: float, block_id: int
) -> tuple[cirq.Circuit, dict[Hashable, float]]
Associate every gate in a circuit with a similarity group.
Inputs: circuit - a cirq.Circuit to be analyzed. weight: float - the weight to assign to each block of gates.
Returns: [0] - the cirq.Circuit with each gate annotated with topological similarity tags. [1] - a dictionary mapping each tag to its weight, where the key is the tag and the value is the weight.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
can_be_parallel
can_be_parallel(
op1: GateOperation,
op2: GateOperation,
tol: float = 1e-14,
) -> bool
Heuristic similarity function to determine if two operations are similar enough to be grouped together in parallel execution.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
colorize
colorize(epochs: Iterable[list[Unique[GateOperation]]])
For each epoch, separate any 1q and 2q gates, and colorize the 2q gates so that they can be executed in parallel without conflicts. Args: epochs: list[list[Unique[cirq.GateOperation]]] - a list of epochs, where each epoch is a list of gates that can be executed in parallel.
Yields:
Type | Description |
---|---|
list[cirq.GateOperation] - a list of lists of gates, where each inner list contains gates that can be executed in parallel. |
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
generate_epochs
generate_epochs(solution: dict[NodeType, float], tol=0.01)
Internal function to generate epochs from the solution of the linear program.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
moment_similarity
moment_similarity(
circuit: Circuit, weight: float
) -> tuple[cirq.Circuit, dict[Hashable, float]]
Associate every gate in each moment with a similarity group.
Inputs: circuit - a cirq.Circuit to be analyzed. weight: float - the weight to assign to each block of gates.
Returns: [0] - the cirq.Circuit with each gate annotated with topological similarity tags. [1] - a dictionary mapping each tag to its weight, where the key is the tag and the value is the weight.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
no_similarity
no_similarity(circuit: Circuit) -> cirq.Circuit
Removes all tags from the circuit
Inputs: circuit: cirq.Circuit - the circuit to remove tags from.
Returns: [0] - cirq.Circuit - the circuit with all tags removed.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
|
parallelize
parallelize(
circuit: Circuit,
hyperparameters: dict[str, float] | None = None,
auto_tag: bool = True,
) -> cirq.Circuit
Use linear programming to reorder a circuit so that it may be optimally be run in parallel. This is done using a DAG representation, as well as a heuristic similarity function to group parallelizable gates together.
Extra topological information (similarity) can be used by tagging each gate with the topological basis groups that it belongs to, for example
circuit.append(cirq.H(qubits[0]).with_tags(1,2,3,4)) represents that this gate is part of the topological basis groups 1,2,3, and 4.
Inputs
circuit: cirq.Circuit - the static circuit to be optimized hyperparameters: dict[str, float] - hyperparameters for the optimization - "linear": float (0.01) - the linear cost of each gate - "1q": float (1.0) - the quadratic cost of 1q gates - "2q": float (2.0) - the quadratic cost of 2q gates - "tags": float (0.5) - the default weight of the topological basis.
Returns: cirq.Circuit - the optimized circuit, where each moment is as parallel as possible. it is also broken into native CZ gate set of {CZ, PhXZ}
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
solve_epochs
solve_epochs(
directed: DiGraph,
group_weights: dict[Hashable, float],
hyperparameters: dict[str, float] | None = None,
) -> dict[Unique[cirq.GateOperation], float]
Internal function to solve the epochs using linear programming.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
to_dag_circuit
to_dag_circuit(
circuit: Circuit, can_reorder=None
) -> nx.DiGraph
Convert a cirq.Circuit to a directed acyclic graph (DAG) representation. This is useful for analyzing the circuit structure and dependencies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
Circuit
|
cirq.Circuit - the circuit to convert. |
required |
can_reorder
|
function - a function that checks if two operations can be reordered. |
None
|
Returns: [0] - nx.DiGraph - the directed acyclic graph representation of the circuit.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
transpile
transpile(circuit: Circuit) -> cirq.Circuit
Transpile a circuit to a native CZ gate set of {CZ, PhXZ}.
Source code in .venv/lib/python3.12/site-packages/bloqade/cirq_utils/parallelize.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|