Index
dump_circuit
dump_circuit(
mt: Method,
circuit_qubits: Sequence[Qid] | None = None,
args: tuple = (),
qubits: Sequence[Qid] | None = None,
ignore_returns: bool = False,
**kwargs
)
Converts a squin.kernel method to a cirq.Circuit object and dumps it as JSON.
This just runs emit_circuit
and calls the cirq.to_json
function to emit a JSON.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mt
|
Method
|
The kernel method from which to construct the circuit. |
required |
Other Parameters:
Name | Type | Description |
---|---|---|
circuit_qubits |
Sequence[Qid] | None
|
A list of qubits to use as the qubits in the circuit. Defaults to None.
If this is None, then |
args |
tuple
|
The arguments of the kernel function from which to emit a circuit. |
ignore_returns |
bool
|
If |
Source code in .venv/lib/python3.12/site-packages/bloqade/squin/cirq/__init__.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
emit_circuit
emit_circuit(
mt: Method,
qubits: Sequence[Qid] | None = None,
circuit_qubits: Sequence[Qid] | None = None,
args: tuple = (),
ignore_returns: bool = False,
) -> cirq.Circuit
Converts a squin.kernel method to a cirq.Circuit object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mt
|
Method
|
The kernel method from which to construct the circuit. |
required |
Other Parameters:
Name | Type | Description |
---|---|---|
circuit_qubits |
Sequence[Qid] | None
|
A list of qubits to use as the qubits in the circuit. Defaults to None.
If this is None, then |
args |
tuple
|
The arguments of the kernel function from which to emit a circuit. |
ignore_returns |
bool
|
If |
Examples:
Here's a very basic example:
from bloqade import squin
@squin.kernel
def main():
q = squin.qubit.new(2)
h = squin.op.h()
squin.qubit.apply(h, q[0])
cx = squin.op.cx()
squin.qubit.apply(cx, q)
circuit = squin.cirq.emit_circuit(main)
print(circuit)
You can also compose multiple kernels. Those are emitted as subcircuits within the "main" circuit. Subkernels can accept arguments and return a value.
from bloqade import squin
from kirin.dialects import ilist
from typing import Literal
import cirq
@squin.kernel
def entangle(q: ilist.IList[squin.qubit.Qubit, Literal[2]]):
h = squin.op.h()
squin.qubit.apply(h, q[0])
cx = squin.op.cx()
squin.qubit.apply(cx, q)
return cx
@squin.kernel
def main():
q = squin.qubit.new(2)
cx = entangle(q)
q2 = squin.qubit.new(3)
squin.qubit.apply(cx, [q[1], q2[2]])
# custom list of qubits on grid
qubits = [cirq.GridQubit(i, i+1) for i in range(5)]
circuit = squin.cirq.emit_circuit(main, circuit_qubits=qubits)
print(circuit)
We also passed in a custom list of qubits above. This allows you to provide a custom geometry and manipulate the qubits in other circuits directly written in cirq as well.
Source code in .venv/lib/python3.12/site-packages/bloqade/squin/cirq/__init__.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
|
load_circuit
load_circuit(
circuit: Circuit,
kernel_name: str = "main",
dialects: DialectGroup = kernel,
register_as_argument: bool = False,
return_register: bool = False,
register_argument_name: str = "q",
globals: dict[str, Any] | None = None,
file: str | None = None,
lineno_offset: int = 0,
col_offset: int = 0,
compactify: bool = True,
)
Converts a cirq.Circuit object into a squin kernel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
circuit
|
Circuit
|
The circuit to load. |
required |
Other Parameters:
Name | Type | Description |
---|---|---|
kernel_name |
str
|
The name of the kernel to load. Defaults to "main". |
dialects |
DialectGroup | None
|
The dialects to use. Defaults to |
register_as_argument |
bool
|
Determine whether the resulting kernel function should accept
a single |
return_register |
bool
|
Determine whether the resulting kernel functionr returns a
single value of type |
register_argument_name |
str
|
The name of the argument that represents the qubit register.
Only used when |
globals |
dict[str, Any] | None
|
The global variables to use. Defaults to None. |
file |
str | None
|
The file name for error reporting. Defaults to None. |
lineno_offset |
int
|
The line number offset for error reporting. Defaults to 0. |
col_offset |
int
|
The column number offset for error reporting. Defaults to 0. |
compactify |
bool
|
Whether to compactify the output. Defaults to True. |
Usage Examples:
# from cirq's "hello qubit" example
import cirq
from bloqade import squin
# Pick a qubit.
qubit = cirq.GridQubit(0, 0)
# Create a circuit.
circuit = cirq.Circuit(
cirq.X(qubit)**0.5, # Square root of NOT.
cirq.measure(qubit, key='m') # Measurement.
)
# load the circuit as squin
main = squin.load_circuit(circuit)
# print the resulting IR
main.print()
You can also compose kernel functions generated from circuits by passing in and / or returning the respective quantum registers:
q = cirq.LineQubit.range(2)
circuit = cirq.Circuit(cirq.H(q[0]), cirq.CX(*q))
get_entangled_qubits = squin.cirq.load_circuit(
circuit, return_register=True, kernel_name="get_entangled_qubits"
)
get_entangled_qubits.print()
entangle_qubits = squin.cirq.load_circuit(
circuit, register_as_argument=True, kernel_name="entangle_qubits"
)
@squin.kernel
def main():
qreg = get_entangled_qubits()
qreg2 = squin.qubit.new(1)
entangle_qubits([qreg[1], qreg2[0]])
return squin.qubit.measure(qreg2)
Source code in .venv/lib/python3.12/site-packages/bloqade/squin/cirq/__init__.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
|